

Multifunction-I/O-X3 series
ADIOX3-API
REFERENCE

Update 2019-3-23

Page2 7/29/2019

Table of contents

1. Overview 3
2. Open close 3
3. Setting 4
4. Data acquisition, Signal condition 5
5. Calibration 7
6. High-speed timer 8
7. Structure 9

Page3 7/29/2019

1. Overview

ADiox3-API is a simple API composed of 27 functions and 4 structures designed to quickly develop applications for
Multifunction I / O-X3 series and Infrasound sensors. Corresponds to ADXIII42LE-***, ADXIII42FE-***, ADXIII-INF01LE, and
ADXIII-INF04LE. All support Ethernet interface and do not support UART version of RS232C, LVTTL.

1. Driver function to access hardware
2. Save and retrieve function and signal adjustment settings
3. Survival function for multiple devices (find live hardware and continue measurement)

Access to nonexistent devices
In this case, the function is not executed and returns FALSE (= 0).

Development file
 Header files and import libraries are provided for VC ++.
 For the 32bit version CDROM¥MFIO_X3¥sdk¥VisuaCPP_X86

For the 64bit version CDROM¥MFIO_X3¥sdk¥VisuaCPP_X64
ADiox3.h／ADiox3.LIB [ADiox3.dll + ADioxScp.dll]

 Main library header file, import library, dynamic link library.

 Other development environment
 As it is similar to Windows API, it also supports other development environments. However,
 helper files are not provided.

 About CARD_ID
Up to 4 devices can be handled and identified by the CARD_ID (0 to 3) assigned to the IP address.

2. Open close(7)
bADioxOpen
Open the driver. It is not necessary to call this function when setting up open at once using bADioxSystemLoad.

 BOOL bADioxOpen (BYTE bCardID,ADR_IP_CONF sADR_IP_CONF);

Argument bCardID CARD_ID to be opened.
sADR_IP_CONF ADR_IP_CONF structure is specified.

In this structure, assign the IP address and port number to CARD_ID.

Return value 1 (TRUE) if successful, 0 (FALSE) if unsuccessful.

bADioxClose
It performs driver closing, hardware termination processing, buffer release to system memory, etc.

 BOOL bADioxClose(BYTE bCardID);

Argument bCardID Card ID of the target device.

Return value 1 (TRUE) if successful, 0 (FALSE) if unsuccessful.

bADioxSystemLoad
Open drivers, initialize hardware (reflect settings), and secure memory buffers for multiple devices. This function opens
the configuration file and executes bADioxOpen (open) → bADioxConfigration (setting) for the number of units. The
contents set here are reflected in the "setting structure database" inside the DLL.

 BOOL bADioxSystemLoad (char *szFile , ADR_IP_CONF sADR_IP_CONF);

Argument *szFile Specify the location of the configuration file.
sADR_IP_CONF ADR_IP_CONF structure will be will specified

 In this structure, assign the IP address and port number to CARD_ID.
Configuration file structure

Size Contents Value / Notes
DWORD (4Byte) Header 0x954EF06B
DWORD (4Byte) Version 0x00000001
ADIOX_SYSTEM structure CARD_ID Setting of 0 CardID = 0 is required.
ADIOX_SYSTEM structure CARD_ID Setting of 1 Insert a dummy even if you do not need it
ADIOX_SYSTEM structure CARD_ID Setting of 2 Insert a dummy even if you do not need it
ADIOX_SYSTEM structure CARD_ID Setting of 3 Insert a dummy even if you do not need it
DWORD (4Byte) Footer 0x954EF06B

 If it is troublesome

If the footer or coding for creating a file is troublesome, please configure it with MultiLogger X3 of the attached
software.
ConfMlt.scp created in the same folder after MultiLogger X3 is the file of the above format.

Return value 1 (TRUE) if successful, 0 (FALSE) if unsuccessful.

Page4 7/29/2019

bADioxSystemStore
Closes the driver, terminates the hardware, releases the memory buffer for multiple devices, and saves the device
settings (ADIOX_SYSTEM) in the setting file. In order to save the device settings with this function, it is necessary to reflect
them in the "setting structure database" inside the DLL in advance using vDbWrite.

 BOOL bADioxSystemStore (char *szFile , ADR_IP_CONF sADR_IP_CONF);

Argument *szFile Specify the location of the configuration file.
sADR_IP_CONF Specify an ADR_IP_CONF structure in which the IP address and port number are

assigned to CARD_ID.

 Configuration file structure it is same as above bADioxSystemLoad.

Hint If you do not need to change the settings,
call the same file as for bADioxSystemLoad or exit with bADioxClose.

Return value 1 (TRUE) if successful, 0 (FALSE) if unsuccessful.

bADioxRetryOpen
In operation, devices that return an error should be disconnected with bADioxClose. This function retries (reconnects
and initializes) the disconnected device. By periodically retrying the disconnected device, automatic recovery can be
achieved. If retry fails, it will wait for response and lock, so retry frequency should be appropriate.

 BOOL bADioxRetryOpen (ADR_IP_CONF sADR_IP_CONF, BYTE bCardID);

Argument bCardID Card ID of the target device.
sADR_IP_CONF Specify an ADR_IP_CONF structure in which the IP address and port number are

assigned to CARD_ID.IP

Return value 1 (TRUE) if successful, 0 (FALSE) if unsuccessful.

bADioxBootStatus
Check if the device of specified CARD_ID can be started. In the case of data collection with multiple devices, it is used
to identify the currently active CARD_ID and the disconnected (retry target) CARD_ID. Even a single device is used to
understand the status.

 BOOL bADioxBootStatus(BYTE bCardID, LPBYTE lpbErrorType);

Argument bCardID CARD_ID you want to check for activation
lpbErrorType A pointer containing the status of whether or not it could be activated.

Value has no error cause (0) There was some error in the configuration file (1),
connection failed, or even if it could connect, an error (2) occurred.

Return value 1 (TRUE) if successful, 0 (FALSE) if unsuccessful.

vADioxErrorMessageStop
Make sure that no error message is displayed. An error dialog pops up to prevent blocking data collection. This is
because it is not desirable to give an error message if you introduce a mechanism that disconnects due to an error and
recovers automatically based on a retry.

void vADioxErrorMessageStop(BOOL bStop);

Argument bStop Suppress error messages with TRUE (= 1).

Enable error message with FALSE (= 0).

3. Setting (5)
bADioxConfigration
The device settings (ADIOX_SYSTEM) specified by CARD_ID are reflected in the hardware. It does not affect the "setting
structure database" inside the DLL.

BOOL bADioxConfigration (struct ADIOX_SYSTEM *lpsTBufSetup,BYTE bCardID);

Argument *lpsTBufSetup Specify the ADIOX_SYSTEM structure that contains the device settings.

bCardID Card ID of the target device.

Return value 1 (TRUE) if successful, 0 (FALSE) if unsuccessful.

vDbWrite
The device settings (ADIOX_SYSTEM) specified by CARD_ID are reflected in the "setting structure database" inside the
DLL. However, it does not access the hardware. Call this function in advance to save the settings on bADioxSystemStore.

void vDbWrite (struct ADIOX_SYSTEM sTBufSetup,BYTE bCardID);

Argument sTBufSetup Specify the ADIOX_SYSTEM structure that contains the device settings.

bCardID Card ID of the target device.

Page5 7/29/2019

vDbRead
From the "configuration structure database" inside the DLL,

Reads the device setting (ADIOX_SYSTEM) specified by CARD_ID.

void vDbRead (struct ADIOX_SYSTEM *lpsTBufSetup,BYTE bCardID);

Argument sTBufSetup Specify the ADIOX_SYSTEM structure that contains the device settings.
bCardID Card ID of the target device.

bADioxScpSetup
From the device settings (ADIOX_SYSTEM), only the settings related to signal adjustment (sensor mode, calibration
position, calibration factor, scaling, alarm) are reflected in the "setting structure database" in the hardware and DLL.

 BOOL bADioxScpSetup (BOOL bExtentionAPI , struct ADIOX_SYSTEM * lpsTBufSetup , BYTE bCardID);

Argument bExtentionAPI Always specify FALSE.
*lpsTBufSetup Specify the ADIOX_SYSTEM structure that contains the device settings

(including signal adjustment).
bCardID Card ID of the target device.

Return value 1 (TRUE) if successful, 0 (FALSE) if unsuccessful.

bADioxScpDefault
For the specified CARD_ID, channel number, and signal type, generates default values for signal adjustment and
reflects them in the "setting structure database" (device setting (ADIOX_SYSTEM)) inside the DLL.

 BOOL bADioxScpDefault(DWORD dwSensorMode, BYTE bCardID, BYTE Bch);

Argument dwSensorMode Sensor type
bCardID Card ID of the target device.
dwCH Input channel number (0-7 for analog, 8-11 for counter / infrasound)

Return value 1 (TRUE) if successful, 0 (FALSE) if unsuccessful.

4. Data acquisition, Signal condition(6)
bADioxIrqStatus
In ring buffer data acquisition, the interrupt status is acquired.

 BOOL bADioxIrqStatus (struct ADIOX_IRQ * lpsTIrqPack , BYTE bCardID);

Argument lpsTIrqPack Specify a pointer to the structure ADIOX_IRQ that stores the interrupt cause.
bCardID Card ID of the target device.

Return value 1 (TRUE) if successful, 0 (FALSE) if unsuccessful.

bADioxBufferRead
Reads 128 samples of block data from the ring buffer. If you receive a ring buffer interrupt message, please access this
function to acquire buffer data.

BOOL bADioxBufferRead (LPDWORD lpdwAdData , LPDWORD lpdwCtcData, LPDWORD lpdwDI,

GPS_DATA_EX *lpsGPS_DATA, int * lpiBatteryLevel, double * lpdTemperature,
BYTE bCardID, BOOL bInit);

Argument lpdwAdData Analog input data channels 0 to 7 (AI 0 to 7) are stored sequentially from the

top, and this is repeated 128 times. The size of analog data is 16 bits, and the upper
16 bits are always 0. The 16 bit straight binary data should be scaled by the
programmer on the code or by dADioxLinCoef. Please secure the array of 8ch
X 128 samples = 1024. The input format of each channel is specified by
dwSensorMode in the ADIOX_SYSTEM structure.

lpdwCtcData Counter input data channels 0 to 3 (CTC 0 to 3) are stored sequentially from the
top, and this is repeated 128 times.
The size of one analog data is 32 bits. The programmer should scale the 32 bit
straight binary data in code or with dADioxLinCoef. Please secure the array of 4ch
X 128 samples = 512. The input format of each channel is specified by
dwSensorMode in the ADIOX_SYSTEM structure.

lpdwDI Pointer containing digital input. This is only one sample. Only the lower 16 bits are
valid, and the upper 16 bits are always 0. In the Infra Sound Sensor, the arguments
are stored meaningless numbers.

*lpsGPS_DATA Pointer to the GPS_DATA_EX structure containing GPS data
*lpiBatteryLevel Pointer that stores battery level 0 to 100% indication.

It is meaningless with the infrastructure sound sensor.
*lpdTemperature A pointer that stores the device temperature.

The signal and the scaled value that is converted into ℃ is stored.

Page6 7/29/2019

bCardID Card ID of the target device.
bInit If you specify TRUE, the Infrasound sensor calibrates the first sample value of

this data string to zero. Set TRUE only at the beginning of data collection, and
FALSE after that. Otherwise, zero calibration will be performed each time.

Return value 1 (TRUE) if successful, 0 (FALSE) if unsuccessful.

* Infrasound data may be assigned to analog input data channels or counter input data channels.

bADioxLastBankCtrl
Makes the last bank readable in ring buffer data collection.

 BOOL bADioxLastBankCtrl (BOOL bBankLock , DWORD dwStopAddr , BYTE bCardID);

Argument bBankLock When TRUE, the data collection side bank at stop is fixed to read.
(Bank will change otherwise) In the case of FALSE, bank fixed is returned to free.
In other words, in the code flow,

bADioxLastBankCtrl(TRUE ,stopaddr ,)
bADioxBufferRead()
bADioxLastBankCtrl(FALSE , dummy,)

it handles up to dwStopAddr of the ADIOX_IRQ structure as the valid range of
data.

 dwStopAddr Specify the stopped address (0-127).
Specify dwStopAddr in the ADIOX_IRQ structure.

bCardID Card ID of the target device.

Return value 1 (TRUE) if successful, 0 (FALSE) if unsuccessful.

bADioxBlockRead
Read various data at once. Access to this function should be judged by software. (In fact, please proceed polling)

BOOL bADioxBlockRead (LPDWORD lpdwTmp , GPS_DATA_EX *lpsGPS_DATA, double *lpdTemp,

int * lpiBatteryLevel, BYTE bCardID, BOOL bInit);

Argument lpdwTmp Analog input data channels 0 to 7 (AI 0 to 7), counter input data channels
0 to 3 (CTC 0 to 3), and digital input data are stored sequentially from the top.
The analog data size is 16 bits and the upper 16 bits are always 0. Straight binary
data should be scaled by the programmer in the code or by dADioxLinCoef.
Secure 13 arrays with 8 analog inputs + 4 counters / Infrasound 4 channels / digital
input. The input format of each channel is specified by dwSensorMode in the
ADIOX_SYSTEM structure.

*lpsGPS_DATA A pointer to the GPS_DATA_EX structure containing GPS data.
*lpdTemp A pointer that stores the device temperature.

The signal is converted and scaled to ° C is stored.
*lpiBatteryLevel Pointer that stores battery level 0 to 100% indication. It is meaningless with the

infrastructure sound sensor.
bCardID Card ID of the target device.
bInit If you specify TRUE, the Infrasound sensor will calibrate this sample value to zero.

Set TRUE only at the beginning of data collection, and FALSE after that.
Otherwise, zero-calibrated will be done each time.

Return value 1 (TRUE) if successful, 0 (FALSE) if unsuccessful.

*In some cases, infrasound data is assigned to the analog input data channel or counter input data channel.

dADioxLinCoef
When DWORD type analog counter / infrasound input value acquired by bADioxBufferRead or bADioxBlockRead is
passed to this function, processing such as reflection of zero / span calibration, linearizer, scaling, alarm, burnout
detection etc. will be returned.

 double dADioxLinCoef (DWORD dwANALOG, double dTemp, LPBOOL lpbBurnOut,

LPDWORD lpdwAlarm,BYTE bCardID,BYTE bCH);

Argument dwANALOG Set the input value such as analog counter infrasound
 dTemp Set the temperature(°C).

Used for zero junction compensation such as thermocouples.
lpbBurnOut It is a pointer of BOOL type with burnout detection flag.

Burnout occurs when TRUE (= 1).
lpdwAlarm It is a pointer of BOOL type with the alarm detection flag.

An alarm occurs when TRUE (= 1).
bCardID Card ID of the target device.
bCH Input channel number (0-7 for analog, 8-11 for counter / infrasound)

Return value Converted value

Page7 7/29/2019

vADioxErrorReport
Report an error.

 void vADioxErrorReport (LPDWORD lpdwSetError , LPDWORD lpdwWriteRetry,

LPDWORD lpdwReadRetry,LPDWORD lpdwReadFlameError,LPDWORD lpdwReadAddressError);

Argument lpdwSetError A pointer that stores the number
 of final errors such as no function response.

lpdwWriteRetry Pointer that stores the number of retries for data transmission
lpdwReadRetry Pointer that stores the number of retries for data reception
lpdwReadFlameError A pointer that stores the number of collapses of the frame structure

of data transmission / reception packets.
lpdwReadAddressError Address verification error of data transmitted and received.

Return value 0 is returned.

5. Calibration(4)
bADioxZeroAdj
Performs zero calibration (= offset calibration) for the specified CARD_ID and input channel number. The zero
calibration position is set by bADioxScpSetup. Before performing this function, provide a zero reference value (for
hardware) to the target input. Repeat zero calibration and span calibration for more accurate calibration.

 BOOL bADioxZeroAdj (BYTE bCardID, BYTE bChannel);

Argument bCardID Card ID of the target device.
bChannel Analog input channel number

Return value 1 (TRUE) if successful, 0 (FALSE) if unsuccessful.

bADioxSpanAdj
Performs span calibration (= gain calibration) for the specified CARD_ID and channel number. The span calibration
position is set by bADioxScpSetup. Before executing this function, provide a span reference value (in hardware) to the
target analog input. Repeat zero calibration and spon calibration for more accurate calibration.

 BOOL bADioxSpanAdj (BYTE bCardID,BYTE bChannel);

Argument bCardID Card ID of the target device.
bChannel Analog input channel number

Return value 1 (TRUE) if successful, 0 (FALSE) if unsuccessful.

vADioxFreeAdj
The specified CARD_ID and channel number are not calibrated, that is, the zero calibration amount is 0 and the span
calibration amount is 1.

 void vADioxFreeAdj (BYTE bCardID,BYTE bChannel);

Argument bCardID Card ID of the target device.
bChannel Analog input channel number

bADioxAutoZero
Perform zero calibration on the amplifier and A / D converter on the board. Do not use this function frequently. When
using polling and ring buffer, do not use as there is a step to the zero point. It is not necessary to call this function unless
you require high accurate one.

 BOOL bADioxAutoZero(BYTE bCardID);

Argument bCardID Card ID of the target device.

Return value 1 (TRUE) if successful, 0 (FALSE) if unsuccessful.

Page8 7/29/2019

6. High-speed timer (3)

vStartTimerIRQ
Start timer interrupt. This timer is faster and more accurate than the standard Windows timer.

 void vStartTimerIRQ (UINT uiPacerDelay,HWND hmWnd);

Argument uiPacerDelay Specify the timer interrupt interval in units of 1 msec.
hmWnd Window handle to transmit timer interrupt (message).

When a timer interrupt occurs, The message WM_USER + 2020 will be sent to
this window handle.

vStopMtimerIRQ
 Stops the timer interrupt started by vStartTimerIRQ.

 void vStopMtimerIRQ ();

 vReserMtimerIRQ
In timer interrupt started by vStartTimerIRQ, it notifies that interrupt processing is completed. The next timer interrupt will
not resume until this function is called.

 void vReserMtimerIRQ ();

Page9 7/29/2019

7. Structure(4)

ADIOX_SYSTEM
Configuration structure that covers all settings of hardware and signal conditioning.

struct ADIOX_SYSTEM
 {
 DWORD dwClockScall;

// AI TRIG
 DWORD dwStartTrigDelay;
 DWORD dwStartTrigLevel1;
 DWORD dwStartTrigLevel2;
 DWORD dwStopTrigDelay;
 DWORD dwStopTrigLevel1;
 DWORD dwStopTrigLevel2;

 // DI TRIG
 DWORD dwStartMask;
 DWORD dwStartDiPattern;
 DWORD dwStartTrigSourceDI_ch;
 DWORD dwStopMask;
 DWORD dwStopDiPattern;
 DWORD dwStopTrigSourceDI_ch;

 // TRIG MODE
 DWORD dwTrigStopMode;
 DWORD dwTrigStartMode;

 // TRIG MISC
 DWORD dwIntrruptMode;
 DWORD dwDeadTime;

 // STOP COUNTER
 DWORD dwStopCounterValue;

 // INFRA SOUND
 double dSetCoef;
 DWORD dwInfraSoundMode;

 // COUNTER
 DWORD dwChatCan;
 DWORD dwLatchMode_A;
 DWORD dwLatchMode_B;
 DWORD dwLatchMode_C;
 DWORD dwLatchMode_D;
 DWORD dwZ_CENTER_A;
 DWORD dwZ_CENTER_B;
 DWORD dwZ_CENTER_C;
 DWORD dwZ_CENTER_D;
 DWORD dwSoftwareClear_A;
 DWORD dwSoftwareClear_B;
 DWORD dwSoftwareClear_C;
 DWORD dwSoftwareClear_D;

 // AO,DO
 DWORD dwAo0;
 DWORD dwAo1;
 DWORD dwDOS;

 // AI MODE
 DWORD dwInputShort;
 DWORD dwFilterEnable;
 DWORD dwPeakholdCh;

 // 信号調節
 DWORD dwSensorMode[MAX_AI_CH];
 double doZeroPos[MAX_AI_CH];
 double doSpanPos[MAX_AI_CH];
 double doZero_Coefficient[MAX_AI_CH];
 double doSpan_Coefficient[MAX_AI_CH];
 BOOL bScalling[MAX_AI_CH];
 double dOutTopScall[MAX_AI_CH];
 double dOutBottomScall[MAX_AI_CH];
 double dInTopScall[MAX_AI_CH];
 double dInBottomScall[MAX_AI_CH];
 DWORD bAlarmMode[MAX_AI_CH];
 double dAlarmUpper[MAX_AI_CH];
 double dAlarmLower[MAX_AI_CH];
 double dScallingRatio[MAX_AI_CH];
 };

Page10 7/29/2019

Member variable

[Sampling frequency]
dwClockScall Specify the sampling frequency of A / D converter. Always sample with 8 channels

of multiplex. Sampling frequency = (460.8 KHz ÷ dwClockScall), valid range 0x17
to 0x1FFFFFF.

[Trigger mode]
dwTrigStopMode Specify a stop trigger. Please select from the following seven.
dwTrigStartMode Specify a start trigger. Please select from the following seven.

 RESET (0ｘ0) Trigger condition not satisfied
 BURST (0x1) Unconditional trigger
 DI_POSEDGE (0x2) Trigger on rising edge of digital input
 DI_NEGEDGE (0x3) Trigger on falling edge of digital input
 DI_PATTERN (0x4) Trigger when digital input has specified pattern
 AI_LEVEL (0xB) Level (edge) trigger of analog input
 AI_AREA (0xC) Area trigger for analog input

If there is no trigger, set dwTrigStartMode = BURST and dwTrigStopMode = RESET.
Now the arguments related to the trigger become meaningless except for other
trigger delays.

[Analog trigger]
dwStartTrigLevel1 Specifies start trigger level1 for analog level trigger and analog area trigger.(*1)
dwStartTrigLevel2 Specifies start trigger level2 for analog level trigger and analog area trigger.(*1)
dwStopTrigLevel1 Specifies stop trigger level1 for analog level trigger and analog area trigger.(*1)
dwStopTrigLevel2 Specifies stop trigger level2 for analog level trigger and analog area trigger.(*1)

[Trigger delay]
dwStartTrigDelay Start trigger delay. Value 1 = 1/8 sampling time. For such time, its start delays a bit

than trigger and then collect data. You can specify from 0x0 to 0xFFFF.
dwStopTrigDelay Stop trigger delay. Value 1 = 1/8 sampling time. For such time, its start delays a bit

than trigger and then collect data. You can specify from 0x0 to 0xFFFF.

[Digital edge trigger]
dwStartTrigSourceDI_ch Channel designation for digital edge start trigger. Specify the number of channels,

ie 0-15.
dwStopTrigSourceDI_ch Channel specification for digital edge / stop trigger. Specify the number of

channels, ie 0-15.

[Digital pattern trigger]
dwStartMask Mask for digital pattern start trigger. The bit field of this variable corresponds to the

channel of the digital input. (* 3) The corresponding bit is 1 for mask and 0 for
unmask.

dwStopMask Mask for digital pattern stop trigger. The bit field of this variable corresponds to the
channel of the digital input. (* 3) The corresponding bit is 1 for mask and 0 for
unmask.

dwStartDiPattern Specifies the trigger pattern for digital pattern start trigger. The trigger comes into
effect when this value matches the digital input value.

dwStopDiPattern Specifies the trigger pattern for digital pattern stop trigger. The trigger comes into
effect when this value matches the digital input value.

[Trigger ・ Ring buffer start stop ・ Automatic stop]
dwIntrruptMode Ring buffer start / stop.

It starts with DMA_INT (1) and stops with NOT_INT (0).
dwStopCounterValue Stops automatically when collecting data for the number of banks specified by

this variable.If 0 is specified, this automatic stop function becomes invalid and
data collection will be performed indefinitely until stop trigger or stop command
is executed.

dwDeadTime Specify the time until stop trigger detection becomes valid after start trigger is

valid. This is to prevent the stop trigger from being applied suddenly.
The value is 1/8 sampling time and valid up to 0-0xFFFFFFFF.

[Infrasound]
dSetCoef Infrastructure sound calibration factor (specifies the sensitivity),

for example, 2017 is 2.0.
dwInfraSoundMode Specify 1 for the infrasound sensor. Other than that is 0.

[Encoder counter]

 dwChatCan Turn chattering canceller on with dwChatCan. 1 and off with 0.
dwLatchMode_A Specifies the counter 0 latch mode from the following three.

 dwLatchMode_B Specifies the counter 1 latch mode from the following three.
 dwLatchMode_C Specifies the counter 2 latch mode from the following three.
 dwLatchMode_D Specifies the counter 3 latch mode from the following three.

 SOFT (0x0) software latch
 Z_PHASE (0x1) Latch when Z phase condition satisfied
 DI_SEL (0x2) Latch on Y phase rising edge

dwZ_CENTER_A Specify counter 0, Z phase condition satisfied mode (counter reset)

Page11 7/29/2019

by any of the following 0-1.

dwZ_CENTER_B Specify counter 1, Z phase condition satisfied mode (counter reset)
by any of the following 0-1.

dwZ_CENTER_C Specify counter 2, Z phase condition satisfied mode (counter reset)
by any of the following 0-1.

dwZ_CENTER_D Specify counter 3, Z phase condition satisfied mode (counter reset)
by any of the following 0-1.

 1: CCW direction: B phase falling when AZ phase is 1,
CW direction: A phase falling when BZ phase is 1

 0: Counter reset on Z phase rising condition

dwSoftwareClear_A When dwLatchMode_A is set to SOFT,
this variable is 1 and the counter is reset, 0 is non-reset.

dwSoftwareClear_B When dwLatchMode_B is set to SOFT,
this variable is 1 and the counter is reset, 0 is non-reset.

dwSoftwareClear_C When dwLatchMode_C is set to SOFT,
this variable is 1 and the counter is reset, 0 is non-reset.

dwSoftwareClear_D When dwLatchMode_D is set to SOFT,
this variable is 1 and the counter is reset, 0 is non-reset.

[output]
dwAo0 Analog output channel 0. Specify 0x0 to 0xFFFF.
dwAo1 Analog output channel 1. Specify 0x0 to 0xFFFF.
dwDOS Digital output channel output value. The bit field of this variable corresponds to

the channel of the digital input. (* 3) Since DO of up to 16 channels is
implemented, specify 0 to 0xFFFF.

[Analog hardware function]
dwInputShort 0 is a normal analog input, 1 is short out the input to ground.
dwFilterEnable Switch digital filter to analog input signal. 0 for Off, 1 for On.
dwPeakholdCh Specifies the peak hold. The bit field of this variable corresponds to the channel

of the analog input. 1 is on, 0 is off. Be sure to turn it off for ring buffer data
collection. In polling, it gets data, records the highest value until the next
acquisition, and makes it data.

[Signal conditioning]
dwSensorMode[*] Specify the signal type for each input channel. Amplifier gain, scaling, and

linearizer are set automatically. For example, if it is CA_K, data acquired by
bADioxBufferRead or bADioxBlockRead is automatically converted to ° C simply
by passing it through dADioxLinCoef. The definition that can be set is shown
below. Note that channel assignments are fixed for items with a red mark at the
end.

 [Signal sources that can be set to [Channel 0 to 7]
 Definition Value (decimal base) Content
 NOT_USE 0 Signal condition not used
 CA_K 1 Thermocouple K 1400 to -240 °C

CA_Kb 2 Thermocouple K 250 to 0 ° C low noise
 CA_J 3 Thermocouple J 1200 to -200 °C

CA_Jb 4 Thermocouple J 190 to 0 ° C low noise
 CA_E 5 Thermocouple E 1000 to -240 °C

CA_Eb 6 Thermocouple E 155 to 0 ° C low noise
 CA_T 7 Thermocouple T 400 to -200 °C
 CA_Tb 8 Thermocouple T 215 to 0 ° C low noise
 CA_R 9 Thermocouple R 1760 to -50 °C

CA_Rb 10 Thermocouple R 955 to 0 ° C low noise
 CA_S 11 Thermocouple S 1300 to -200 °C
 CA_Sb 12 Thermocouple S 1040 to 0 ° C low noise
 CA_N 13 Thermocouple N 1400 to -240 °C
 CA_Nb 14 Thermocouple N 320 to 0 ° C low noise
 CA_B 15 Thermocouple B 1800 to 200 °C
 CA_Bb 16 Thermocouple B 1495 to 0 ° C low noise
 PT100 17 Platinum RTD Pt100 800 to 0 °C
 JPT100 18 Platinum RTD JPt100 500 to 0 ° C
 VBP_10mV 19 Voltage ± 10mV range
 VBP_100mV 20 Voltage ± 100mV range
 VBP_1V 21 Voltage ± 1V range
 VBP_10V 22 Voltage ± 10V range
 I_4_20 23 Current 4-20 mA / 500 Ω termination
 I_4_20EX 24 Current 4-20 mA / 350 Ω termination
 I_4_20EX2 25 current 4-20mA / 47Ω onboard termination

D16BIT 26 0-65535

Below is the Infrasound Sensor ADXIII-INF01LE function.
VIB 46 accelerometer XYZ (earthquake)

Always AI0-2 (Gal)
SPL 47 Sound level meter (Z characteristics)

Always AI3 (dB/SPL)

Page12 7/29/2019

APL 48 barometer Always AI4(KPa)

Below is the Infrasound Sensor ADXIII-INF04LE function.
VIB 46 accelerometer XYZ (earthquake)

Always AI0-2 (Gal)
INF04_HF 49 Infrasound HF（0.001Hz-1000Hz）

Always AI3 (mPa)

Signal sources that can be set to [Channels 8 to 11]
 Definition Value Content
 EC_4X 27 4x encoder counter (Z not used)

EC_4XZ 28 4x encoder counter (Z used)
 EC_2X 29 2x encoder counter (Z not used)

 EC_2XZ 30 2x encoder counter (Z used)
 EC_1X 31 1x encoder counter (Z not used)

 EC_1XZ 32 1x encoder counter (Z used)
 UPC 33 up / down counter (Z not used)
 UPC_Z 34 up / down counter (Z used)

Below is the Infrasound Sensor ADXIII-INF01LE function.
INFRS_TA 37 Temperature sensor Always CTC2 (°C)
INFRS_FB 36 Infrasound DC Always CTC0 (mPa)
INFRS_DIF 41 Infrasound AC Always CTC1 (mPa)

Below is the Infrasound Sensor ADXIII-INF04LE function.
INF04_LF 50 Infrasound LF (pressure) Always CTC0 (hPa)
INF04-TMP 51 Temperature sensor Always CTC1 (°C)

[Signal conditioning / Calibration]
doZeroPos[*] Stores “MAX_AI_CH” (* 2) as zero calibration positions.
doSpanPos[*] Stores “MAX_AI_CH” (* 2) as span calibration positions.
doZero_Coefficient[*] Stores “MAX_AI_CH” (* 2) as zero calibration coefficients.
doSpan_Coefficient[*] Stores “MAX_AI_CH” (* 2) as span calibration coefficients.

[Signal conditioning / Scaling]
bScalling[*] TRUE if scaling, FALSE if not. Stores “MAX_AI_CH” (* 2).
dOutTopScall[*] Scaling reference value after conversion (upper). Store this "MAX_AI_CH"(*2).
dOutBottomScall[*] Scaling reference value (bottom) after conversion. Store this "MAX_AI_CH"(*2).
dInTopScall[*] Scaling reference value before conversion (upper). Store this "MAX_AI_CH"(*2).
dInBottomScall[*] Scaling reference value before conversion (bottom).Store this "MAX_AI_CH"(*2).
dScallingRatio[*] This variable is used internally. Do not operate.

For example, when 4 to 20 mA is set to 1000 to 10000 rpm,
dOutTopScall=10000、dOutBottomScall＝1000、dInTopScall＝20、dInBottomScall＝4、bScalling=TRUE

[Signal conditioning /alarm]
bAlarmMode[*] Specifies the alarm mode. When 0 is specified: Off, when 1 is specified: Alarm

(over) at dAlarmUpper or higher If 2 is specified, alarm (under) will occur at
dAlarmLower or lower. When 3 is specified, an alarm (in range) within the range
of dAlarmUpper to dAlarmLower, When 4 is specified, the alarm (out range) will
be in the range of dAlarmUpper to dAlarmLower. Store this "MAX_AI_CH" (* 2).

dlarmUpper[*] Alarm setting value (upper) Is stored "MAX_AI_CH" (* 2).
dAlarmLower[*] Alarm setting value (bottom) Is stored "MAX_AI_CH" (* 2).

*1 Analog level minimum to maximum correspond to 0 to 0xFFFF.
*2 MAX_AI_CH is 12, 0-7 is analog input, 8-11 is counter and infrasound.
*3 For example, Bit 5 (0x20) corresponds to digital input / output channel 5.

Page13 7/29/2019

ADIOX_IRQ
Stores interrupt status.

struct ADIOX_IRQ
 {
 DWORD dwBankCount;
 DWORD dwTrigSeq;
 DWORD dwBankAddr;
 DWORD dwIrq;
 DWORD dwStopAddr;
 };

Member variable

dwBankCount dwBankCount. Stores the number of ring buffer bank changes (number of
interrupts). If this number and the number of interrupts are different, sampling is
too fast due to buffer overrun.

dwTrigSeg Trigger ring buffer engine status.
 TRIG_IDLE 0x0 Stopped or waiting for start trigger.
 TRIG_RUN 0x1 Collecting data.
 TRIG_TURN 0x2 Wait for stop trigger.
 TRIG_HIST 0x3 During dead time.
dwBankAddr Indicates a bank of ring buffers.

 dwIrq Interrupt occurrence status.
Occurs at 1. → Obtain ring buffer data immediately.

 dwStopAddr Ring buffer stop address (where it stopped)

ADR_IP_CONF
Assign an IP address and port number to CARD_ID.

struct ADR_IP_CONF
 {
 int iIP1[MAX_MFIO];
 int iIP2[MAX_MFIO];
 int iIP3[MAX_MFIO];
 int iIP4[MAX_MFIO];
 int iPORT[MAX_MFIO];
 BOOL bEnable[MAX_MFIO];
 };

Member variable
 iIP1[*] IP address for [Array number = CARD_ID], first digit (192 for 192.168.1.50)
 iIP2[*] IP address for [Array number = CARD_ID], 2’nd digit (168 for 192.168.1.50)
 iIP3[*] IP address for [Array number = CARD_ID], 3’rd digit (1 for 192.168.1.50)
 iIP4[*] IP address for [Array number = CARD_ID], 4’th digit (50 for 192.168.1.50)
 iPORT[*] Port number for [Array number = CARD_ID]
 bEnable[*] Whether or not to enable the device with [Sequence number = CARD_ID],

TRUE as valid, FALSE as invalid.

GPS_DATA_EX
Stores GPS data in the infrastructure sound sensor.

struct GPS_DATA_EX
 {
 DWORD dwYear;
 DWORD dwMonth;
 DWORD dwDay;
 DWORD dwHour;
 DWORD dwMinute;
 double dSecond;
 };

Member variable

dwYear Year
dwMonth Month
dwDay Day
dwHour Hour
dwMinute Minute
dSecond Second (3 decimal places)

	Table of contents
	1.Overview
	2.Open close(7)
	bADioxOpen
	bADioxClose
	bADioxSystemLoad
	bADioxSystemStore
	bADioxRetryOpen
	bADioxBootStatus
	vADioxErrorMessageStop

	3. Setting (5)
	bADioxConfigration
	vDbWrite
	vDbRead
	bADioxScpSetup
	bADioxScpDefault

	4.Data acquisition, Signal condition(6)
	bADioxIrqStatus
	bADioxBufferRead
	bADioxLastBankCtrl
	bADioxBlockRead
	dADioxLinCoef
	vADioxErrorReport

	5.Calibration(4)
	bADioxZeroAdj
	bADioxSpanAdj
	vADioxFreeAdj
	bADioxAutoZero

	6.High-speed timer(3)
	vStartTimerIRQ
	vStopMtimerIRQ
	vReserMtimerIRQ

	7.Structure(4)
	ADIOX_SYSTEM
	ADIOX_IRQ
	ADR_IP_CONF
	GPS_DATA_EX

